

IPv6 Router Support

June, 25, 2001 Naoya Ikeda (naoya.ikeda@itg.hitachi.co.jp) Enterprise Server Division Hitachi, Ltd.

Contents

- Introduction
- Japanese IPv6 Market Update
- Hitachi's IPv6 Development and deployment
- "Real world" IPv6 Gigabit Router Implementation

Introduction of Hitachi

Headquarters in Tokyo, Japan

1,069 Subsidiary Companies - 355 outside Japan

Japanese Market Update Why IPv6 in Japan?

- IPv4 address
 - Not enough IPv4 address space assigned to Japan and other Asian countries
- IT Growing Rapidly
 - Always On
 - Mobile
 - Consumer Electronics Products
- Japan needs more IP address!

'Always on' in Japan

- ADSL subscribers
- Ready to FTTH service

Туре	NSP / Carrier	Speed (bps)	Price (JPY/ month)
ADSL	NTT-/W, DION	Uplink: 288K	4600-6200
	TOKYO-metallic,	– 512K	
	e-access,So-net,etc.	Downlink:1.5M	
FTTH(10)	NTT-E/W	10Mbps	5900
FTTH(100)	YusenBroadNetworks,	100Mbps	6100-11000
	NTT-E/W		3800 (Shared)

Life Duration of IPv4 Address

Problems Caused By Scarcity of IP addresses

Ad-hoc methods (e.g. NAT) has been used to resolve scarcity of IP addresses in last 5 years. However, issues such as duplication of private IP addresses, restriction on applications, etc. still exist.

	Solutions in last 5 years	Current Issues
Company/ Campus	 Using private IP addresses for intranet Translate global IP address, when internal hosts access to external WWW servers. 	 VPN construction is difficult, because NAT is unidirectional ("private" to "global") Duplication of IP addresses, on merger etc. Application restriction (e.g. ftp isn't available) Increasing operational administrative costs
Carrier/ ISP	 Temporary assignment of IP addresses to users, when the session is linked up. Using private IP addresses and NAT 	 Semi-static address assignment because of permanent connection services Difficulty to service as users, hosts and network equipment increases Increasing operational/administrative costs

NAT : Network Address Translator

e-Japan

- The Japanese former prime Minister announced
 - " IPv6…"

(21.Sep.2000)

– For example:

JGN (Japan Gigabit Network) will support

IPv6 service for R&D in 2001.

By Ministry of Public Management, Home Affairs,

Posts and Telecommunications

IPv6 Deployment in Japan

IPv6 Case Study: ISID Large Scale Enterprise Network

- Information Services International (ISID) Dentsu, Ltd. http://www.isid.co.jp/english/news/ipv6.html
- Building Japan's first 5,000-machine company-wide network using IPv6
- New network is expected to begin operating at the end of July 2001
- Voice and video to be distributed to all 5,000 terminals over Gigabit Ethernet
- IPv4/IPv6 dual-stack technology

Hitachi's IPv6 Deployment (1)

- A Founding Member of IPv6 forum
- 5 Years Development of IPv6 routers.
- World's First IPv6 Protocol Translation Router
 "NR60" in 1997. (Sorry, NR60 was Sold Out !)

• IETF contributions.

– Especially RFC2767 (BIS).

Hitachi's IPv6 Deployment (2)

- Early stage (1996-97) Interoperability Testing in UNH IOL. University of New Hampshire, Interoperability Laboratory
- A Member of KAME Project and USAGI project.
 - http://www.kame.net
 - http://www.linux-ipv6.org/
- Interoperability Testing in Tahi Project.
 - http://www.tahi.org
- "Toolnet6" Free Hitachi Software.
 - Driver Software For IPv6 Support Windows 95/98/NT.

IPv6 Software for Windows "Toolnet6"

- Software Tool For Existing Windows(R) Applications Over IPv6.
- Enhancement For Network Interface Card Driver Software
- Free distribution from Hitachi home page
 - http://www.hitachi.co.jp/Prod/comp/network/pexv6-e.htm
- RFC2767(Bump-in-the-Stack)

All Rights Reserved.Copyright(C) 2001 Hitachi, Ltd

Hitachi's IPv6 Deployment (3)

- Hitachi Gigabit router "GR2000" Series currently shipping
- IPv6 Released and Supported Protocol For The GR2000.
- Dual-stack approach
 - IPv4 & IPv6 Available Across All Models & Interfaces

Gigabit Router GR2000 Key Features

- Layer-3 non-blocking switching performance
 - Up to 40Mpps Forwarding Rates (GR2000-20H)
 - Up to OC48c (2.4Gbps)
- Distributed processing architecture
- Scalable WAN/LAN services
- Carrier class hardware and software assure system reliability
- Full suite of routing protocols ensures interoperability
 - OSPF, RIP, BGP4, IP, IPX, IPv4, DVMRP, PIM, MPLS & IPv6
- Hardware based QoS (priority & bandwidth control)
- Hardware based filtering

Gigabit Router GR2000 IPv6 Deployment

- Many Japanese and worldwide Service Providers, Enterprises are already using GR2000 IPv6.
 - More than 100 units, 40 sites, 20 users deployed worldwide
 - Global Center Japan will start IPv6 iDC service with GR2000.
 - ISID(Information Services International Dentsu, Ltd.) is planning to deploy their IPv6 network with GR2000.
 - CRL(Communications Research Laboratory) has already started wide area and high speed IPv6 network with GR2000.

GR2000 IPv6 (Current Status)

- GR2000 IPv6 software is based on KAME stack.
- Software based with some hardware assist
 - Low cost to start for early adopters
 - Flexibility for Additional IPv6 Functionality
- Maintains IPv4 high-speed forwarding rates
- Standards Driven
 - RFC2460:Internet Protocol, Version 6(IPv6)
 - RFC2473:Packet Tunneling
 - RFC2080:RIPng
 - RFC2858,2545: Extensions for BGP-4
 - RFC2462:Address autoconfiguration
 - RFC1972, 2472 2492 :IPv6 packets over Ethernet, PPP, ATM
 - RFC2465,2466,2452,2454:MIB
 - etc.

"Real World" IPv6 What is Needed to Routers?

- High Performance (like IPv4 performance)
 - High speed forwarding rates
 - High speed QoS and Filtering
- Routing Protocols
 - RIPng, BGP4+, **OSPFv3**, Static
- Network Management System, Operation tools
- Scalable
 - Support on all models
 - Support for a wide range of network interfaces

GR2000 New Release for IPv6

High Performance IPv4 and IPv6 Dual Stack

- IPv6 packet routing and forwarding by dedicated ASIC
- Up to 26Mpps(GR2000-20H)
- Up to OC-48c [2.4Gbps] Wire Speed
- Hardware Based QoS Control (including IPv6 Diff-Serv)
- Hardware Based Packet Filtering
- High Speed IPv6 Tunneling

OSPFv3 supported for Large Scale Intra-domain

Release Date: 3Q/2001 in Japan

Overseas: There might be delay depending on regulatory issue

lPv4

"Real World" IPv6 Network Management System

- IPv4+IPv6 Network using GR2000
 - Manageable by IPv4 NMS
- GR2000 supports IPv6 MIBs
 - Gathered by SNMP Over IPv4
 - IPv6 MIB(RFC2465)
 - IPv6 ICMPMIB(RFC2466)
 - tcp on IPv6 MIB(RFC2452)
 - udp on IPv6 MIB(RFC2454)
- IPv6 Native NMS : under development

MIB: Management Information Base SNMP: Simple Network Management Protocol

All Rights Reserved.Copyright(C) 2001 Hitachi, Ltd

IPv6

GR2000 Enhancement Plan Terabit Class Router (Preliminary Info.)

- Further More Broad band Internet – FTTH (10/100Mbps) for subscribers
- Further More Subscribers
- "movie class" Rich Contents

Terabit class router of GR2000 series (under planning)

- Up to OC768(40Gbps)
- IPv4/IPv6 Dual Stack

Conclusion

- IPv6 Already Started at Commercial Stages.
- Implemented at several Japanese customer sites in a production environment
- As a Vendor, Hitachi Has Released IPv6 Products.
- Positive Feedback Received From Many Evaluation & Testing Sites Deploying GR2000 & IPv6.
- GR2000 New Release: Hardware Based IPv4/IPv6 Dual Stack Gigabit Router
 - UP to 26Mbps,UP to OC48c
 - OSPFv3
 - Manageable by IPv4 NMS
- Next Step: Terabit Class IPv4/IPv6 Dual Stack Router

Contact Information

• USA:

Hitachi Computer Products (America), Inc. 3101 Tasman Drive, Santa Clara, CA 95054, USA Tel : +1-888-48-HiSpeed, Fax : +1-408-988-0778 E-mail : hi.customer@hitachi.com www.internetworking.hitachi.com

• Europe:

Hitachi Internetworking Whitebrook Park, Lower Cookham Road, Maidenhead, Berkshire SL6 8YA, United Kingdom Tel : +44 16 28 58 54 58, Fax : +44 16 28 58 57 14

• Germany:

Hitachi Internetworking Dornhofstrasse 34, D-63263 Neu-Isenburg, Germany Tel : +49-(0)-6102-2999-50

Thank you!